huitieme partie:
Cinematique et dynamique
du corps solide indeformable

Notions abordées:
- 8.1 Cinematique du solide, distribution des vitesses
8.2 Théoremes relatif au moment cinétique
8.3 Calcul du moment cinetique
8.4 Energie cinétique
8.5 Roulement sans glissement
8.6 Rotation autour d’un axe fixe
8.7 Rotation autour d’un point fixe

Buts:
- apprendre a déecrire le mouvement d’un corps solide

- savoir écrire les équations du mouvement d’un corps solide
(théorémes du centre de masse et du moment cinétigue)




8.1 Comparaison gualitative

Point materiel de masse m
Glissement ou rotation

O L = ?@ Solide indéformable

Glissement et rotation

System de

. ﬁ - MC_l)G
points
matériels Lo =10

Test le moment d’inertie
F=Zma&a=M§G LO:z?a/\maﬁa
a a



8.1 Corps solide indéformable

- Définition: solide indéformable = systéme de points mateériels, fixes les uns par rapport aux autres

- Remarques:

- Tous les corps solides reels se deforment sous I’effet des forces appliguées; le solide indéformable est un modele
mathématique (bonne approximation si les déformations sont petites par rapport aux dimensions du solide).

- Le nombre N de points mateériels peut étre trés grand (N — o0); on remplace alors les sommes sur ces N points
par des intégrales. Par exemple, pour le centre de masse:

. 1 . 1 [, 1 . 3, dm(7)
o = — T Mg, — - 2) —
G= 7 EO; — 7 /?"dm('f') M o rp(T) d°T p(¥) e

sile corp est homogene p(7) = v

« Position d’un solide:

- 6 coordonnées indépendantes
- EX., : position d’un point + orientation du solide
- 3 coord. pour un des points
- 3 angles pour définir I’orientation du solide par rapport a ce point

- Ex., vitesse d’un point A v, (3 composantes du vecteur) +
une vitesse de rotation w (3 composantes du vecteur)




8.1 Vitesse et accélération d’un point du solide

solide

A A

Repere lie au réferentiel  0é,é,é,

AN AN

Repére lié au solide Ay .Y,V

(A = point quelconque du solide)

- Tous les points P du solide
sont immobiles dans ce repére

- Pour tout vecteur y immobile dans ce repeére on a:

dt T dt (Zy“y“)zzyi ‘D’/\Z%@i:cﬁ/\g’

w = vitesse angulaire instantanée

formule de Poisson _—" g‘a g%tl?éig” du repere Ay,y,y5, donc

v

€2
e, référentiel

Pour tout point P du solide (par rapport a 0é,é,é,) :

Gp =TT = S (7at AP) = s + L AP = Tx + G A AP
Ez'pzd;): :t(vA—Fw/\zﬁ —a,A—I—w/\B—}—w/\ UJ/\B

Avec w indépendant de P, de A et du choix du repere Ay,9,7-



8.1 Mouvement instantané d’un solide
(cinématique)

- Soit A un point quelcongue du solide: Up =04 + WA ﬁ VP € solide

Bp =D, +Dp+BAAP avec Bh = 0

On peut trouver les mémes relation pour

Up et dp en utilisant les formules pour le
changement de référentiel

dp=dp+ 20 ADp+dy +BA(BAO'P)+WA0P  avecvp =0,dp =0,0' = A

e mouvement instantané du solide est I’un des quatre suivants:

w=0etvyg =0 S vp =0 VP <& solide au repos
w=0etvyg #0 & Up =04 #0 VP & solide en translation
G#0Oetvy - d=0 ©vp-@d=0 VP < solide en rotation (axe || &)
W#OQetvg-w#0 ©vp-WdF#0 VP < solide en mvt hélicoidal

(rotation d’axe || & + translation || &)



8.1 Axe Istantané de rotation

Si w # 0, il existe un et un seul axe de rotation instantané

Comment trouver un point C sur I’axe
Instantané de rotation?

Plan perpendiculaire a w

Tealvy

. _ = T,=bv,A@d  badéterminer
Tea LW

Dans un mouvement circulaire: v = wr

Vg 1 -
Tea=—=bvjw = b=— = 71,., =
CA w A w2 CA
Au cour du temps in(bAd)=(d -&)b—(d-b)e
- - — A - — — - - — - — 1 2.2 1 — - —
vC=UA+a)/\AC=vA+Ea)A(a)/\vA) =vA+?(w-vA)a)—ﬁa) vAzﬁ(a)-vA)a)

w-v,=0 =vV,=0  Lespoints sur I’axe instantané de rotation sont immobiles: rotation

—

WV, 0 =2V, lw Les points sur I’axe instantane de rotation ont un mouvement de
translation paralléle & w : mouvement hélicoidal ’



8.1 Solides en contact

- Soient deux solides S et S, restant constamment en contact

- On choisit I’'un des deux solides, S,, comme référentiel
= S, est immobile et on décrit
le mouvement de S par rapport a S,

- On admet que le contact est ponctuel.
Soit A le point de S en contact avec S, au temps t

référentiel
. v, vitesse de glissement (de S par rapport a S,)

- Condition du roulement sans glissement : v, = 0
- A est alors sur I’axe instantané de rotation

- Vecteur instantané de rotation & = @, + @ | Sof \ 000 W

Décomposition en composantes parallele
et perpendiculaire au plan tangent commun a S et S, en A:

w,, = vitesse angulaire de roulement
w | = vitesse angulaire de pivotement

référentiel

Résumé. Siw # 0 :
v, = 0: roulement sans glissement autour d’un axe par A

v, L w: rotation (avec glissement)

- — - 1 S — - Z1: .
Vpll w7y =—v,A0=0 = axe de rotation passe par A (mouvement helicoidal)



8.1 EX.: cylindre sur un plan sans glissement

En trois dimensions:
- Uncylindre S de rayon R roule sans glisser sur

‘/\ le plan Oxz, avec la ligne de contact parallele a
l’axe 2

- w = wZ = vitesse angulaire de roulement

DY

(il n’y a pas de pivotement)

Dans le plan Oxy
- On considere la section X du cylindre
o R - v, = 0 (pas de glissement) = C est le centre

Uy, = WACD ) ] ) .
5 —2wRE b 5 A instantané de rotation = pour chaque point P de
yt Lp— —LOn” 5 Sonaque B, = ¥, + BACP = BACP
) — L8 ND
V., = —wRX C - Parex.:
| eTEX dp=aACD=| 0 |A|l B |=| wR
centre Instantane w 0 0

de rotation



8.1 EX.: cylindre sur un plan sans glissement

Trajectoire du CM et d’un point sur la surface du
cylindre qui roule (w = w2 ) sans glisser :

$7\ Xr = _(,()Rt
Y K\ - CM: v, = —wRx = ¢«

Ligne droite

- Point P: se déplace avec G et il tourne autour de G
p = WACP = BA(CG + GP)
= wZA(RYy —RsinO X + R cos 6 )
= —w(R + Rcos8)X — wR sin 8y
= —w(R + Rcoswt)X — wRsinwt y

=DV

Xp = —wRt — R sin wt

Yp = R+ Rcoswt

r cycloide

X .
centre instantané ‘\‘\ «~N
de rotation i \/ R

N.B.: dans I’approximation de point matériel, tous les points se déplacent a la vitesse du CM
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8.1 Mouvement « plan-sur-plan »

- Definition: mouvement tel qu’un plan X du solide S reste
constamment dans un plan fixe IT du référentiel

<
a tout instant les vitesses de tous les points du
solide sont paralleles a un plan fixe II du référentiel

- Conséguences:
- le vecteur instantané de rotation w est perpendiculaire a I1
- on est ramené a I’étude du mouvement d’une surface plane rigide X (section de S)
sur un plan IT;
- dans ce plan, il y a un centre instantané de rotation (si w # 0)
- Lieu géometrigue des centres instantanés de rotation:
- dans le référentiel lie a IT: la base
- dans le référentiel lié a Z: la roulante

10



8.1 EX.: barre qui glisse contre un mur dans un plan

7 4 - Comme la barre reste dans le plan Xy il s’agit d’un

mouvement plan-sur-planet w = wZ = 02:

A

L

| 04 = #, = lcos 69 U, = —lsinf 0y

O
> OB=FB=lsin99? v =lco589A
2 @ B X B y

Le point C par le quel passe I’axe instantané de rotation est défini par

1
T — VU, AW =——lsinf w? = —lsinf %
CA — 0)2 A (1)2
1 1
Frp = —5VpgW = —lcosBw” =—lcosOP
> w w
X

11



8.2 Théoremes relatifs au moment cinétique

. Moment cinétique par rapporta O: L, = X4 %y A My,

Par rapport a un point A quelconque on a:
Ly=Y,AP, AmyB, = Y.u(A0 + OP,) Am by = AO AY g myBy + Yo OB, AmyD, =

ZA=EAM§G+ZO

- Théoréme du transfert: L. =L

G

Ly, est le moment cinétique calcule
dans le réferentiel du CM Gx. 9.7

Z)G = ZaG—P)a /\mcxﬁa — ZaG—P)a A ma(ﬁgc + 1})G) — Zaﬁa A maﬁc; + (Zaﬁama) A 1_7)6 - Z?; +0 = ZZ‘

. 1¢ Théoreme de KOnig: Zo =

—

0G

AMDg + L

Le moment cinétique totale par rapport a O est égale a la somme
du moment cinétique de la masse totale M concentrée en CM et
du moment cinétique calculé par rapport au CM

12



8.2 Theoremes relatifs au moment cinétigue

- Evolution du moment cinétique par rapport a O: ZO =Y, T, AMyVU, = 0G A Mv. + Z’g

- - dL, _-, dL:
dL I y —%_0GAMB. +0GAMad ¢
d_tOZOGAFext_l_d_tG dt Ve + G+dt
dlt. ., . .
=0+0G AF& +—2 = 06 AF* + Mg
ME* = 0G A Fext + Mg = 0G A Fext + Mg I, =T:

.- Théoreme du moment cinétique par rapport a un point A quelconque

dL,
dt

rrext
A

_T_}A/\M'BG

dL
dt

—4 = MeXt Sl T_}A — O,T})A ” T})G,A =G

L, _ d (A0 A Mg + Lo)
dt Vg 0

dLO
—AO/\MUG +A0/\MClG +W

= —D, A M, + A0 A FeXt 4 pert

—B4 A M, + AO A FeXt 4 Z OP, A Fext

= _'l})A/\M'l})G +2A—)Pa/\ﬁext

t
_UAAMUG+Mex 13



8.2 Theoremes relatifs au solide

. 2% Théoreme de Konig:

1 2
I(:::I(* +‘E§A4l%;

L’énergie cinétique totale par rapport a un point O est égale a la
somme de I’énergie cinétigue du CM et I’énergie cinétigue du
mouvement relatif autour du CM

1 2 1 =% > N2 1 * 2 2 Dk, 23
K=§Zmava =§Zma(va+v6-) =52ma(va +ve + 2V, V) =
a (04 (04

K* +=%amavZ + (Zamaty) - ¥ = K* + M v

14



8.2 Théoremes relatifs au solide

Que fera I’axe du disque?

1) Ne bouge pas
2) Tourne sens horaire

3) Tourne sens anti-horaire

Demo: https://auditoires-physique.epfl.ch/experiment/501

15


https://auditoires-physique.epfl.ch/experiment/501

8.2 Théoremes relatifs au solide

Que fera I’axe du disque?
1) Ne bouge pas
2) Tourne sens horaire

3) Tourne sens anti-horaire

16



8.2 EX.: deux billes reliees par une tige (sans masse)

€ A
> €¢

~

m Que fera I’axe vertical?
- ® U1
T
0
1) Ne bouge pas
C=c ) ge p
A 2) Tourne sens horaire

d
> 3) Tourne sens anti-horaire

Demo: https://auditoires-physique.epfl.ch/experiment/669

17
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8.2 EX.: deux billes reliees par une tige (sans masse)

Le centrede latigeCav, =0 et en plus est

le centre de masse G (3., m,7y = 0):
myry + myt, = mry —mr; =0
Théoréme du moment cinétique  dL; —
(par rapport au centre de masse G) 44 Mg
Deux masses m telles que 7, = —7,
par rapporta C
. C . . - Cestattache a un axe de support A
asvy =v, =0 vertical avec 7; faisant un angle 0
M’m = #,Amg = mrygsin By = —Mc,z les deux billes restes

en équilibre

G C C1 C,2 (LG -0 tdLG _ 0)

18



8.2 EX.: deux billes reliees par une tige (sans masse)

Le centre de latige C a v, = 0 et en plus est
le centre de masse G (3., m,7y = 0):
myry + myt, = mry —mr; =0

Théoréme du moment cinétique dZG

(par rapport au centre de masse G) 44 G

at =0 on donne une impulsion tel que v; = v, = v

il - - . A A -
Lcy =riAamv; = mryvsinfé, —mrivcosé, = L¢

ZG = Ec,1 + chz = sz = 2mryv (sinfé, —cos b é,)

€, A
‘ Lo €¢

. W 4
Lc ?
m °
- Q1
1
0
C=0G
. T2
Lco A
N
m<7T

Les billes suivent un mouvement circulaire de rayon d ->T = Té, = mw*d = mw*r; sin 6é,

Iﬁc,l =#Aamg+HAT = (mrygsin@ — r, T cos 0)éy

1\7I>C,2 = Foamg + AT = (—mrygsin@ — ;T cos 0)éy

Mg =Mcy +Mcz =
—2mr{w? cos B sin 0éy

19



8.2 EX.: deux billes reliees par une tige (sans masse)

dL
Deux facon de calculer d—tG

R - dé —_- A
1) En utilisant la formule de Poisson (dt‘ =wAEé).
dL; d o .
Tl (Zmrlv sinfé, — 2mryv cosf ep)

. odeé dé _
=2mnrv (sm 0 d—tZ — cos 6 d—tp) = Zmrlv(sm 0 w

ANé, —cosO@AE,) =—2mrvwcos B éy = M=

—2mr{w? cosOsinb &p =

vV =rywsinf = wd \

L. précede autour de I’axe A avec wg; = w = g

2) Considérations geométriques: la composante i
selon &, de L précede autour de &, avec vitesse

angulaire w, a determiner

dL _,
d_tG = Lgpwgéy = —2mryv cos O wgéy = Mg —2mr{ w? cos 0 sin by

=
vwe =11 w?sind = wdwg = dw? = w; =w




8.2 EX.: quatre billes reliées par une tige (sans masse)

On ajoute deux masses m supplémentaires, afin de
réaliser un

systeme symeétrique par rapport a I’axe de rotation

- - = Ay A 7
c1 =TnAmv; =mrvsinfé, —mrivcosfé, = L¢,

o~ o~

- - = A A 7
c3 =T3Amuz =mnrvsinfé, + mryvcosté, = L¢y

o~

G = ZC = ZC,l + ZC,Z +ZC,3 +ZC,4 = 4m7"1v sin Héz = 4mdv éz

= 4md2a) éz = IA(U éz = IAJ

Mc,1 =7AAmg+ 1A T = (mrygsinf — T cos 9)é¢ — _Mcs
1\_4)6,2 =FAamg + AT = (—mryg sin@ — T cos 0)éy = _1\7[’6’4

Mg = Mg = M, + Mc,z + Mc,3 + MCA =0

s M;=0 = L; = I,w est conservé et paralléle a w

I, = moment d’inertie

21



8.2 Ex.: tabouret tournant

Pourquoi le tabouret tournant sans frottement
(a I’arrét guand I’axe de la roue est horizontal)
se met-il en rotation quand on force
I’axe de la roue a étre vertical ?

v
tabouret a tabouret en
"arrét rotation

Conservation de L:  si le tabouret peut tourner, la composante €, du moment cinétique du systeme

(roue + personne + tabouret) est conservée (mgz ne peut pas géenérer une
composante Mé,)

-> (L, ot = 0 = const) -> le tabouret tourne en direction opposé a la roue

force interne: la personne appligue des forces sur la roue pour la tourner. Le moment M de ces
forces ne change pas le moment cinétique totale mais que le moment L de la roue

Ao 9L _ Ldb o rotation
dt dt autour de axe
4 . . X avec vitesse
M="=QAL angulaire Q
dt
M = 2rAF = 2rF = LQ F = E Force appliquée par la personne pour

Demo: https://auditoires-physique.epfl.ch/experiment/17 27" tourner |’6\X€ de rotation 22



https://auditoires-physique.epfl.ch/experiment/17

8.2 Ex.:Roue du velo

. Roue de vélo en rotation au tour de son axe de symétrie: L || & = w)

- On veut changer la direction de I’axe de rotation; comment faut-il exercer le
couple de force pour que I’axe tourne autour de Oz ? ou de Ox ?

i

~
)
v

<y v

23



8.2 Ex.:Roue du velo

- Roue de veélo en rotation au tour de son axe de symétrie: Lg || @

- On veut changer la direction de I’axe de rotation; comment faut-il exercer le
couple de force pour que 1’axe tourne autour de Ox ? ou de Oz ?

a) forces F paralleles a z b) forces F paralleles a x
Mt 2
_F dL¢
Le y

A\

X
R dL . R dL .
M selon —x = = selon —X Mselonz = = selon Z

Ltourne dans le plan Xy autour de OZ Ltourne dans le plan yZ autour de OX

Théoréme du dL - S S = S
moment cinétique =G — & =(FAF)+ (—FAN—F)=27AF

24



