
Notions abordées:

- 8.1 Cinématique du solide, distribution des vitesses

- 8.2 Théorèmes relatif au moment cinétique

- 8.3 Calcul du moment cinétique

- 8.4 Energie cinétique

- 8.5 Roulement sans glissement

- 8.6 Rotation autour d’un axe fixe

- 8.7 Rotation autour d’un point fixe

Buts: 

- apprendre à décrire le mouvement d’un corps solide

- savoir écrire les équations du mouvement d’un corps solide 
(théorèmes du centre de masse et du moment cinétique)
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huitième partie:
Cinématique et dynamique

du corps solide indéformable
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8.1 Comparaison qualitative

Point materiel de masse m

𝜔

Glissement         ou            rotation

Ԧ𝑟

Ԧ𝐹 = 𝑚 Ԧ𝑎 𝐿𝑂 = Ԧ𝑟 ∧ 𝑚 Ԧ𝑣

O

G
System de 

points 

matériels

Ԧ𝐹 =෍

𝛼

𝑚𝛼 Ԧ𝑎𝛼 = 𝑀 Ԧ𝑎𝐺 𝐿𝑂 =෍

𝛼

Ԧ𝑟𝛼 ∧ 𝑚𝛼 Ԧ𝑣𝛼

෍
𝛼

𝑁

Solide indéformable

Glissement et rotation

න𝜌…𝑑𝑟3 𝐿𝑂 = ሚ𝐼𝜔

Ԧ𝐹 = 𝑀 Ԧ𝑎𝐺

ሚ𝐼est le moment d’inertie



• Définition: solide indéformable = système de points matériels, fixes les uns par rapport aux autres

• Remarques:

- Tous les corps solides réels se déforment sous l’effet des forces appliquées; le solide indéformable est un modèle 

mathématique (bonne approximation si les déformations sont petites par rapport aux dimensions du solide).

- Le nombre N de points matériels peut être très grand (𝑁 → ∞); on remplace alors les sommes sur ces 𝑁 points 

par des intégrales. Par exemple, pour le centre de masse:

• Position d’un solide: 

- 6 coordonnées indépendantes 

- Ex., : position d’un point + orientation du solide

- 3 coord. pour un des points

- 3 angles pour définir l’orientation du solide par rapport à ce point

- Ex., vitesse d’un point A Ԧ𝑣𝐴 (3 composantes du vecteur) + 

une vitesse de rotation 𝜔 (3 composantes du vecteur) 
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8.1 Corps solide indéformable

𝜌 Ԧ𝑟 =
𝑑𝑚(Ԧ𝑟)

𝑑3𝑟

si le corp est homogene 𝜌 Ԧ𝑟 =
𝑀

𝑉

solide

ො𝑥
ො𝑦

Ƹ𝑧



• Repère lié au référentiel 

• Repère lié au solide 

(A = point quelconque du solide)

- Tous les points P du solide 

sont immobiles dans ce repère

- Pour tout vecteur Ԧ𝑦 immobile dans ce repère on a:

• Pour tout point P du solide (par rapport à 𝑂 Ƹ𝑒1 Ƹ𝑒2 Ƹ𝑒3) :
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8.1 Vitesse et accélération d’un point du solide

formule de Poisson

𝜔 = vitesse angulaire instantanée
de rotation du repère Aො𝑦1 ො𝑦2 ො𝑦3, donc
du solide

solide

référentiel

Avec 𝜔 indépendant de P, de A et du choix du repère 𝐴ො𝑦1 ො𝑦2 ො𝑦3

𝑂 Ƹ𝑒1 Ƹ𝑒2 Ƹ𝑒3

𝐴ො𝑦1 ො𝑦2 ො𝑦3



• Soit A un point quelconque du solide:

• Le mouvement instantané du solide est l’un des quatre suivants:
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Ԧ𝑣𝑃 = Ԧ𝑣𝐴 + Ԧ𝑣𝑃
′ + 𝜔 ∧ 𝐴𝑃 avec Ԧ𝑣𝑃

′ = 0

Ԧ𝑎𝑃 = Ԧ𝑎𝐴 + 𝜔  𝜔  𝐴𝑃 + ሶ𝜔  𝐴𝑃

Ԧ𝑎𝑃 = Ԧ𝑎𝑃
′ + 2𝜔  Ԧ𝑣𝑃

′ + Ԧ𝑎𝑂′ + 𝜔  𝜔  𝑂′𝑃 + ሶ𝜔  𝑂′𝑃 avec Ԧ𝑣𝑃
′ = 0, Ԧ𝑎𝑃

′ = 0,𝑂′ = 𝐴

On peut trouver les mêmes relation pour 

Ԧ𝑣𝑃 et Ԧ𝑎𝑃 en utilisant les formules pour le 

changement de référentiel 

8.1 Mouvement instantané d’un solide 

(cinématique)
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8.1 Axe istantané de rotation

Comment trouver un point C sur l’axe 

instantané de rotation?
Plan perpendiculaire à 𝜔

C

A

𝜔

Ԧ𝑣𝐴

Ԧ𝑟𝐶𝐴

Ԧ𝑟𝐶𝐴⏊Ԧ𝑣𝐴

Ԧ𝑟𝐶𝐴⏊𝜔
Ԧ𝑟𝐶𝐴 = 𝑏 Ԧ𝑣𝐴 𝜔 b à déterminer

Dans un mouvement circulaire: 𝑣 = 𝜔𝑟

𝑟𝐶𝐴 =
𝑣𝐴
𝜔

= 𝑏𝑣𝐴𝜔  𝑏 =
1

𝜔2 Ԧ𝑟𝐶𝐴 =
1

𝜔2
Ԧ𝑣𝐴 𝜔

Au cour du temps

Si 𝜔 ≠ 0, il existe un et un seul axe de rotation instantané 

Ԧ𝑣𝐶 = Ԧ𝑣𝐴 + 𝜔 ∧ 𝐴𝐶 = Ԧ𝑣𝐴 +
1

𝜔2𝜔 ∧ 𝜔 ∧ Ԧ𝑣𝐴 = Ԧ𝑣𝐴 +
1

𝜔2 𝜔 ⋅ Ԧ𝑣𝐴 𝜔 −
1

𝜔2𝜔
2 Ԧ𝑣𝐴 =

1

𝜔2 𝜔 ⋅ Ԧ𝑣𝐴 𝜔

Ԧ𝑎 ∧ 𝑏 ∧ Ԧ𝑐 = Ԧ𝑎 ⋅ Ԧ𝑐 𝑏 − Ԧ𝑎 ⋅ 𝑏 Ԧ𝑐

𝜔 ⋅ Ԧ𝑣𝐴 = 0 ⇒ Ԧ𝑣𝐶 = 0 Les points sur l’axe instantané de rotation sont immobiles: rotation

𝜔 ⋅ Ԧ𝑣𝐴 ≠ 0 ⇒ Ԧ𝑣𝐶 ∥ 𝜔 Les points sur l’axe instantané de rotation ont un mouvement de 

translation parallèle à 𝜔 : mouvement hélicoïdal



• Soient deux solides 𝑆 et 𝑆0 restant constamment en contact 

- On choisit l’un des deux solides, 𝑆0, comme référentiel

⇒ 𝑆0 est immobile et on décrit 

le mouvement de 𝑆 par rapport à 𝑆0
- On admet que le contact est ponctuel.

Soit 𝐴 le point de 𝑆 en contact avec 𝑆0 au temps 𝑡

• Ԧ𝑣𝐴 vitesse de glissement (de 𝑆 par rapport à 𝑆0)

• Condition du roulement sans glissement : Ԧ𝑣𝐴 = 0

- 𝐴 est alors sur l’axe instantané de rotation

• Vecteur instantané de rotation 𝜔 = 𝜔// + 𝜔⏊

• Décomposition en composantes parallèle

et perpendiculaire au plan tangent commun à 𝑆 et 𝑆0 en 𝐴:

𝜔// = vitesse angulaire de roulement

𝜔⏊ = vitesse angulaire de pivotement
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8.1 Solides en contact

référentiel

référentiel

Résumé. Si 𝜔 ≠ 0 :

Ԧ𝑣𝐴 = 0: roulement sans glissement autour d’un axe par A

Ԧ𝑣𝐴 ⊥ 𝜔: rotation (avec glissement)

Ԧ𝑣𝐴 ∥ 𝜔: Ԧ𝑟𝐶𝐴 =
1

𝜔2 Ԧ𝑣𝐴 𝜔 = 0 ⇒ axe de rotation passe par A (mouvement hélicoïdal)



• En trois dimensions:

- Un cylindre 𝑆 de rayon 𝑅 roule sans glisser sur 

le plan 𝑂𝑥𝑧, avec la ligne de contact parallèle à 

l’axe Ƹ𝑧

- 𝜔 = 𝜔 Ƹ𝑧 = vitesse angulaire de roulement

(il n’y a pas de pivotement) 

• Dans le plan 𝑂𝑥𝑦

- On considère la section Σ du cylindre

- Ԧ𝑣𝐶 = 0 (pas de glissement) ⇒ C est le centre 

instantané de rotation ⇒ pour chaque point P de 

S on a que Ԧ𝑣𝑃 = Ԧ𝑣𝐶 +𝜔𝐶𝑃 = 𝜔𝐶𝑃

- Par ex.:
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8.1 Ex.: cylindre sur un plan sans glissement

S

centre instantané
de rotation

C

G

B

D

O

Ԧ𝑣𝐺 = −𝜔𝑅ො𝑥

Ԧ𝑣𝐵 = −2𝜔𝑅ො𝑥

Ԧ𝑣𝐷 = 𝜔𝐶𝐷

ො𝑥

ො𝑦

Ƹ𝑧

ො𝑥

ො𝑦



• Trajectoire du CM et d’un point sur la surface du 

cylindre qui roule (𝜔 = 𝜔 Ƹ𝑧 ) sans glisser :

- CM: Ԧ𝑣𝐺 = −𝜔𝑅ො𝑥 ⇒

- Point 𝑃: se déplace avec G et il tourne autour de G

9

8.1 Ex.: cylindre sur un plan sans glissement

centre instantané
de rotation

C
G

P

O

Ԧ𝑣𝐺 = −𝜔𝑅ො𝑥

Ԧ𝑣𝑃 = 𝜔𝐶𝑃 = 𝜔 𝐶𝐺 + 𝐺𝑃

= 𝜔 Ԧ𝑧(Rො𝑦 − 𝑅 sin 𝜃 ො𝑥 + 𝑅 cos 𝜃 ො𝑦)

= −𝜔(𝑅 + 𝑅 cos 𝜃)ො𝑥 − 𝜔𝑅 sin 𝜃 ො𝑦

= −𝜔(𝑅 + 𝑅 cos𝜔𝑡) ො𝑥 − 𝜔𝑅 sin𝜔𝑡 ො𝑦

ො𝑥

ො𝑦

Ƹ𝑧

ො𝑥

ො𝑦

𝑥𝐺 = −𝜔𝑅𝑡
𝑦𝐺 = 𝑅

𝜃 𝑥𝑝 = −𝜔𝑅𝑡 − 𝑅 sin𝜔𝑡

𝑦𝑝 = 𝑅 + 𝑅 cos𝜔𝑡

cycloïde

Ligne droite

N.B.: dans l’approximation de point matériel, tous les points se déplacent à la vitesse du CM



• Définition: mouvement tel qu’un plan Σ du solide 𝑆 reste
constamment dans un plan fixe Π du référentiel

⇔
à tout instant les vitesses de tous les points du
solide sont parallèles à un plan fixe Π du référentiel 

• Conséquences: 

- le vecteur instantané de rotation 𝜔 est perpendiculaire à Π

- on est ramené à l’étude du mouvement d’une surface plane rigide Σ (section de 𝑆) 

sur un plan Π; 

- dans ce plan, il y a un centre instantané de rotation (si 𝜔 ≠ 0)

• Lieu géométrique des centres instantanés de rotation:

- dans le référentiel lié à Π:  la base

- dans le référentiel lié à Σ:  la roulante
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8.1 Mouvement « plan-sur-plan »



• Comme la barre reste dans le plan ො𝑥 ො𝑦 il s’agit d’un 

mouvement plan-sur-plan et 𝜔 = 𝜔 Ƹ𝑧 = ሶ𝜃 Ƹ𝑧:
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8.1 Ex.: barre qui glisse contre un mur dans un plan

Ԧ𝑟𝐶𝐴 =
1

𝜔2
Ԧ𝑣𝐴 𝜔 = −

1

𝜔2
𝑙 sin 𝜃 𝜔2 = −𝑙 sin 𝜃 ො𝑥

𝑂𝐴 = Ԧ𝑟𝐴 = 𝑙 cos 𝜃 ො𝑦 Ԧ𝑣𝐴 = −𝑙 sin 𝜃 ሶ𝜃 ො𝑦

𝑂𝐵 = Ԧ𝑟𝐵 = 𝑙 sin 𝜃 ො𝑥 Ԧ𝑣𝐵 = 𝑙 cos 𝜃 ሶ𝜃 ො𝑦

Ԧ𝑟𝐶𝐵 =
1

𝜔2
Ԧ𝑣𝐵 𝜔 =

1

𝜔2
𝑙 cos 𝜃 𝜔2 = −𝑙 cos 𝜃 ො𝑦

ො𝑥

ො𝑦

A

B

l

ො𝑥

ො𝑦

A

B

l

C

𝜃

𝜃

Le point C par le quel passe l’axe instantané de rotation est défini par

Ԧ𝑟𝐶𝐵

Ԧ𝑟𝐶𝐴

Ƹ𝑧

Ƹ𝑧



• Moment cinétique par rapport à O: 𝐿𝑂 = σ𝛼 Ԧ𝑟𝛼 ∧ 𝑚𝛼 Ԧ𝑣𝛼

• Théorème du transfert:

• 1er Théorème de König:

12

8.2  Théorèmes relatifs au moment cinétique

𝐿𝐺 = 𝐿𝐺
∗

Par rapport à un point A quelconque on a:

𝐿𝐴 = σ𝛼𝐴𝑃𝛼 ∧ 𝑚𝛼 Ԧ𝑣𝛼 = σ𝛼(𝐴𝑂 + 𝑂𝑃𝛼) ∧ 𝑚𝛼 Ԧ𝑣𝛼 = 𝐴𝑂 ∧ σ𝛼𝑚𝛼 Ԧ𝑣𝛼 + σ𝛼𝑂𝑃𝛼 ∧ 𝑚𝛼 Ԧ𝑣𝛼 ⇒

𝐿𝐴 = 𝐴𝑂 ∧ 𝑀 Ԧ𝑣𝐺 + 𝐿𝑂

𝐿𝐺 = σ𝛼 𝐺𝑃𝛼 ∧ 𝑚𝛼 Ԧ𝑣𝛼 = σ𝛼 𝐺𝑃𝛼 ∧ 𝑚𝛼( Ԧ𝑣𝛼
∗ + Ԧ𝑣𝐺) = σ𝛼 𝐺𝑃𝛼 ∧ 𝑚𝛼 Ԧ𝑣𝛼

∗ + (σ𝛼 𝐺𝑃𝛼𝑚𝛼) ∧ Ԧ𝑣𝐺 = 𝐿𝐺
∗ +0 = 𝐿𝐺

∗

𝐿𝑂 = 𝑂𝐺 ∧𝑀 Ԧ𝑣𝐺 + 𝐿𝐺
∗

𝐿𝐺
∗ est le moment cinétique calculé 

dans le référentiel du CM G ො𝑥𝐺 ො𝑦𝐺 Ƹ𝑧𝐺

Le moment cinétique totale par rapport à O est égale à la somme 

du moment cinétique de la masse totale M concentrée en CM et 

du moment cinétique calculé par rapport au CM 

=

0

ො𝑥
ො𝑦

Ƹ𝑧
ො𝑥𝐺

ො𝑦𝐺Ƹ𝑧𝐺



• Evolution du moment cinétique par rapport à O: 𝐿𝑂 = σ𝛼 Ԧ𝑟𝛼 ∧ 𝑚𝛼 Ԧ𝑣𝛼 = 𝑂𝐺 ∧𝑀 Ԧ𝑣𝐺 + 𝐿𝐺
∗

• Théorème du moment cinétique par rapport à un point A quelconque
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8.2 Théorèmes relatifs au moment cinétique

𝑑𝐿𝑂
𝑑𝑡

= 𝑂𝐺 ∧ Ԧ𝐹𝑒𝑥𝑡 +
𝑑𝐿𝐺

∗

𝑑𝑡

𝑑𝐿𝑂
𝑑𝑡

=
ሶ

𝑂𝐺 ∧ 𝑀 Ԧ𝑣𝐺 + 𝑂𝐺 ∧ 𝑀 Ԧ𝑎𝐺 +
𝑑𝐿𝐺

∗

𝑑𝑡

= 0 + 𝑂𝐺 ∧ Ԧ𝐹𝑒𝑥𝑡 +
𝑑𝐿𝐺

∗

𝑑𝑡
= 𝑂𝐺 ∧ Ԧ𝐹𝑒𝑥𝑡 +𝑀𝐺

𝑒𝑥𝑡
∗

𝑀𝑂
𝑒𝑥𝑡 = 𝑂𝐺 ∧ Ԧ𝐹𝑒𝑥𝑡 +𝑀𝐺

𝑒𝑥𝑡∗ = 𝑂𝐺 ∧ Ԧ𝐹𝑒𝑥𝑡 +𝑀𝐺
𝑒𝑥𝑡

𝑑𝐿𝐴
𝑑𝑡

= 𝑀𝐴
𝑒𝑥𝑡 − Ԧ𝑣𝐴 ∧ 𝑀 Ԧ𝑣𝐺

𝑑𝐿𝐴
𝑑𝑡

=
𝑑

𝑑𝑡
𝐴𝑂 ∧ 𝑀 Ԧ𝑣𝐺 + 𝐿𝑂

=
ሶ

𝐴𝑂 ∧ 𝑀 Ԧ𝑣𝐺 + 𝐴𝑂 ∧𝑀 Ԧ𝑎𝐺 +
𝑑𝐿𝑂
𝑑𝑡

= − Ԧ𝑣𝐴 ∧ 𝑀 Ԧ𝑣𝐺 + 𝐴𝑂 ∧ Ԧ𝐹𝑒𝑥𝑡 +𝑀𝑂
𝑒𝑥𝑡

= − Ԧ𝑣𝐴 ∧ 𝑀 Ԧ𝑣𝐺 + 𝐴𝑂 ∧ Ԧ𝐹𝑒𝑥𝑡 +෍

𝛼

𝑂𝑃𝛼 ∧ Ԧ𝐹𝑒𝑥𝑡

== − Ԧ𝑣𝐴 ∧ 𝑀 Ԧ𝑣𝐺 +෍

𝛼

𝐴𝑃𝛼 ∧ Ԧ𝐹𝑒𝑥𝑡

= − Ԧ𝑣𝐴 ∧ 𝑀 Ԧ𝑣𝐺 +𝑀𝐴
𝑒𝑥𝑡

𝐿𝐺 = 𝐿𝐺
∗

𝑑𝐿
𝐴

𝑑𝑡
= 𝑀𝐴

𝑒𝑥𝑡 si Ԧ𝑣𝐴 = 0, Ԧ𝑣𝐴 ∥ Ԧ𝑣𝐺 , 𝐴 = 𝐺



• 2er Théorème de König:
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8.2 Théorèmes relatifs au solide

𝐾 = 𝐾∗ +
1

2
𝑀𝑣𝐺

2

L’énergie cinétique totale par rapport à un point O est égale à la 

somme de l’énergie cinétique du CM et l’énergie cinétique du 

mouvement relatif autour du CM 

𝐾 =
1

2
෍

𝛼

𝑚𝛼𝑣𝛼
2 =

1

2
෍

𝛼

𝑚𝛼 Ԧ𝑣𝛼
∗ + Ԧ𝑣𝐺

2 =
1

2
෍

𝛼

𝑚𝛼(𝑣𝛼
∗2 + 𝑣𝐺

2 + 2 Ԧ𝑣𝛼
∗ ∙ Ԧ𝑣𝐺) =

𝐾∗ +
1

2
σ𝛼𝑚𝛼𝑣𝐺

2 +(σ𝛼𝑚𝛼 Ԧ𝑣𝛼
∗) ∙ Ԧ𝑣𝐺 = 𝐾∗ +

1

2
𝑀 𝑣𝐺

2
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8.2 Théorèmes relatifs au solide

O

𝐿𝑂 ∝ 𝜔Ԧ𝐹
Que fera l’axe du disque? 

1) Ne bouge pas

2) Tourne sens horaire

3) Tourne sens anti-horaire 

Demo: https://auditoires-physique.epfl.ch/experiment/501

Ƹ𝑒𝑧
∗

Ƹ𝑒𝑟
∗

Ƹ𝑒𝜙
∗

https://auditoires-physique.epfl.ch/experiment/501
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8.2 Théorèmes relatifs au solide

O

𝐿𝑂 ∝ 𝜔Ԧ𝐹

Que fera l’axe du disque? 

1) Ne bouge pas

2) Tourne sens horaire

3) Tourne sens anti-horaire 

𝑑𝐿
𝑂

𝑑𝑡
=𝑀𝑂 = Ԧ𝑟 ∧ Ԧ𝐹 = −𝑟𝐹 Ƹ𝑒𝜙

∗

Ƹ𝑒𝑧
∗

Ƹ𝑒𝑟
∗

Ƹ𝑒𝜙
∗

𝐿0(𝑡)

Ƹ𝑒𝑟
∗

Ƹ𝑒𝜙
∗

𝑀𝑂

𝐿0(𝑡 + 𝑑𝑡)

𝑑𝐿0 𝑡 = 𝑀0𝑑𝑡
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Que fera l’axe vertical? 

1) Ne bouge pas

2) Tourne sens horaire

3) Tourne sens anti-horaire 

8.2 Ex.: deux billes reliées par une tige (sans masse)

d


m

m

C = G

𝜔

Demo: https://auditoires-physique.epfl.ch/experiment/669

https://auditoires-physique.epfl.ch/experiment/669


• Deux masses m telles que Ԧ𝑟1 = −Ԧ𝑟2
par rapport à C

• C est attaché à un axe de support D
vertical avec Ԧ𝑟1 faisant un angle q
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8.2 Ex.: deux billes reliées par une tige (sans masse)

Le centre de la tige C a Ԧ𝑣𝐶 = 0 et en plus est 

le centre de masse G (σ𝛼𝑚𝛼 Ԧ𝑟𝛼
∗ = 0):

𝑚1 Ԧ𝑟1 +𝑚2 Ԧ𝑟2 = 𝑚𝑟1 −𝑚𝑟1 = 0

𝑀𝐶,1 = Ԧ𝑟1 𝑚 Ԧ𝑔 = 𝑚𝑟1𝑔 sin 𝜃 Ƹ𝑒

= −𝑀𝐶,2

𝑀𝐺 = 𝑀𝐶 = 𝑀𝐶,1 +𝑀𝐶,2 = 0

Théorème du moment cinétique 

(par rapport au centre de masse G)

𝑑𝐿𝐺
𝑑𝑡

= 𝑀𝐺

les deux billes restes 

en équilibre 

(𝐿𝐺 = 0 et 
𝑑𝐿𝐺

𝑑𝑡
= 0) 

• Cas 𝑣1 = 𝑣2 = 0

d


m

m 𝑇

C = G
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8.2 Ex.: deux billes reliées par une tige (sans masse)

Le centre de la tige C a Ԧ𝑣𝐶 = 0 et en plus est 

le centre de masse G (σ𝛼𝑚𝛼 Ԧ𝑟𝛼
∗ = 0):

𝑚1 Ԧ𝑟1 +𝑚2 Ԧ𝑟2 = 𝑚𝑟1 −𝑚𝑟1 = 0

𝐿𝐶,1 = Ԧ𝑟1 𝑚 Ԧ𝑣1 = 𝑚𝑟1𝑣 sin 𝜃 Ƹ𝑒𝑧 −𝑚𝑟1𝑣 cos 𝜃 Ƹ𝑒𝜌 = 𝐿𝐶,2

𝐿𝐺 = 𝐿𝐶,1 + 𝐿𝐶,2 = 2𝐿𝐶,1 = 2𝑚𝑟1𝑣 (sin 𝜃 Ƹ𝑒𝑧 −cos 𝜃 Ƹ𝑒𝜌)

Théorème du moment cinétique 

(par rapport au centre de masse G)

𝑑𝐿𝐺
𝑑𝑡

= 𝑀𝐺

• à t = 0 on donne une impulsion tel que 𝑣1 = 𝑣2 = 𝑣

Les billes suivent un mouvement circulaire de rayon d -> 𝑇 = 𝑇 Ƹ𝑒𝜌 = 𝑚𝜔2𝑑 = 𝑚𝜔2𝑟1 sin 𝜃 Ƹ𝑒𝜌

𝑀𝐶,1 = Ԧ𝑟1 𝑚 Ԧ𝑔 + Ԧ𝑟1 𝑇 = (𝑚𝑟1𝑔 sin 𝜃 − 𝑟1𝑇 cos 𝜃) Ƹ𝑒


𝑀𝐶,2 = Ԧ𝑟2 𝑚 Ԧ𝑔 + Ԧ𝑟2 𝑇 = (−𝑚𝑟1𝑔 sin 𝜃 − 𝑟1𝑇 cos 𝜃) Ƹ𝑒


 𝑀𝐺 = 𝑀𝐶,1 +𝑀𝐶,2 =

−2𝑚𝑟1
2𝜔2 cos 𝜃 sin 𝜃 Ƹ𝑒



d


m

m 𝑇

C = G
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8.2 Ex.: deux billes reliées par une tige (sans masse)

𝐿𝐺 précède autour de l’axe D avec 𝜔𝐺 = 𝜔 =
𝑣

𝑑

d


m

m 𝑇

C = G

𝑑𝐿𝐺
𝑑𝑡

= 𝐿𝐺𝜌𝜔𝐺 Ƹ𝑒𝜙 = −2𝑚𝑟1𝑣 cos 𝜃 𝜔𝐺 Ƹ𝑒𝜙 = 𝑀𝐺 −2𝑚𝑟1
2𝜔2 cos 𝜃 sin 𝜃 Ƹ𝑒



⇒
𝑣𝜔𝐺 = 𝑟1 𝜔

2 sin 𝜃 ⇒ 𝜔𝑑𝜔𝐺 = 𝑑𝜔2 ⇒ 𝜔𝐺 = 𝜔

𝐿𝐺𝜌(𝑡)

𝑀𝐺
𝐿𝐺𝜌(𝑡 + 𝑑𝑡)

𝑑𝐿𝐺 𝑡 =
𝐿𝐺𝜌𝜔𝐺𝑑𝑡 Ƹ𝑒𝜙

Deux façon de calculer 
𝑑𝐿𝐺

𝑑𝑡

1) En utilisant la formule de Poisson (
𝑑 Ƹ𝑒𝑖

𝑑𝑡
= 𝜔 ∧ Ƹ𝑒𝑖): 

𝑑𝐿𝐺
𝑑𝑡

=
𝑑

𝑑𝑡
2𝑚𝑟1𝑣 sin 𝜃 Ƹ𝑒𝑧 − 2𝑚𝑟1𝑣 cos 𝜃 Ƹ𝑒𝜌

=2𝑚𝑟1𝑣 sin 𝜃
𝑑 Ƹ𝑒𝑧

𝑑𝑡
− cos 𝜃

𝑑 Ƹ𝑒𝜌

𝑑𝑡
= 2𝑚𝑟1𝑣൫

൯

sin 𝜃 𝜔

∧ Ƹ𝑒𝑧 − cos𝜃 𝜔 ∧ Ƹ𝑒𝜌 = −2𝑚𝑟1𝑣𝜔 cos 𝜃 Ƹ𝑒𝜙 = 𝑀𝐺=

−2𝑚𝑟1
2𝜔2 cos 𝜃 sin 𝜃 Ƹ𝑒


⇒

𝑣 = 𝑟1𝜔 sin 𝜃 = 𝜔𝑑

2) Considérations géométriques: la composante 

selon Ƹ𝑒𝜌 de LG précède autour de Ƹ𝑒𝑧 avec vitesse 

angulaire 𝜔𝐺 à déterminer
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8.2 Ex.: quatre billes reliées par une tige (sans masse)

On ajoute deux masses m supplémentaires, afin de 
réaliser un 

système symétrique par rapport à l’axe de rotation

𝑀𝐶,1 = Ԧ𝑟1 𝑚 Ԧ𝑔 + Ԧ𝑟1 𝑇 = (𝑚𝑟1𝑔 sin 𝜃 − 𝑟1𝑇 cos 𝜃) Ƹ𝑒 = −𝑀𝐶,3

𝑀𝐶,2 = Ԧ𝑟2 𝑚 Ԧ𝑔 + Ԧ𝑟2 𝑇 = (−𝑚𝑟1𝑔 sin 𝜃 − 𝑟1𝑇 cos 𝜃) Ƹ𝑒 = −𝑀𝐶,4

𝑀𝐺 = 𝑀𝐶 = 𝑀𝐶,1 +𝑀𝐶,2 +𝑀𝐶,3 +𝑀𝐶,4 = 0

𝑑𝐿𝐺
𝑑𝑡

= 𝑀𝐺 = 0

𝐿𝐶,1 = Ԧ𝑟1 𝑚 Ԧ𝑣1 = 𝑚𝑟1𝑣 sin 𝜃 Ƹ𝑒𝑧 −𝑚𝑟1𝑣 cos 𝜃 Ƹ𝑒𝜌 = 𝐿𝐶,2

𝐿𝐺 = 𝐿𝐶 = 𝐿𝐶,1 + 𝐿𝐶,2 +𝐿𝐶,3 +𝐿𝐶,4 = 4𝑚𝑟1𝑣 sin 𝜃 Ƹ𝑒𝑧 = 4𝑚𝑑𝑣 Ƹ𝑒𝑧

= 4𝑚𝑑2𝜔 Ƹ𝑒𝑧 = 𝐼∆𝜔 Ƹ𝑒𝑧 = 𝐼∆𝜔

𝐿𝐶,3 = Ԧ𝑟3 𝑚 Ԧ𝑣3 = 𝑚𝑟1𝑣 sin 𝜃 Ƹ𝑒𝑧 +𝑚𝑟1𝑣 cos 𝜃 Ƹ𝑒𝜌 = 𝐿𝐶,4

𝐿𝐺 = 𝐼∆𝜔 est conservé et parallèle à 𝜔

𝐼∆ = moment d’inertie

m m

m m

d

C = G
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8.2 Ex.: tabouret tournant

tabouret à 
l’arrêt

tabouret en 
rotation

Pourquoi le tabouret tournant sans frottement 

(à l’arrêt quand l’axe de la roue est horizontal)

se met-il en rotation quand on force

l’axe de la roue à être vertical ?

Conservation de 𝐿: si le tabouret peut tourner, la composante Ƹ𝑒𝑧 du moment cinétique du système 

(roue + personne + tabouret) est conservée (𝑚𝑔 Ƹ𝑧 ne peut pas générer une 

composante 𝑀 Ƹ𝑒𝑧) 

-> (𝐿𝑧,tot = 0 = 𝑐𝑜𝑛𝑠𝑡) -> le tabouret tourne en direction opposé à la roue

force interne: la personne applique des forces sur la roue pour la tourner. Le moment M de ces 

forces ne change pas le moment cinétique totale mais que le moment L de la roue

rotation 

autour de axe 

x avec vitesse 

angulaire W Ԧ𝑟

𝑀 = 2Ԧ𝑟 Ԧ𝐹 = 2𝑟𝐹 = 𝐿W
𝐹 =

𝐿W

2𝑟
Force appliquée par la personne  pour 

tourner l’axe de rotationDemo: https://auditoires-physique.epfl.ch/experiment/17

https://auditoires-physique.epfl.ch/experiment/17


• Roue de vélo en rotation au tour de son axe de symétrie:

- On veut changer la direction de l’axe de rotation; comment faut-il exercer  le 

couple de force pour que l’axe tourne autour de Oz ? ou de Ox ?
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8.2 Ex.:Roue du velo

O O

𝐿𝐺 ∥ 𝜔 = 𝜔ො𝑦

ො𝑦

ො𝑥

Ƹ𝑧

ො𝑦

ො𝑥

Ƹ𝑧



• Roue de vélo en rotation au tour de son axe de symétrie:

- On veut changer la direction de l’axe de rotation; comment faut-il exercer  le 

couple de force pour que l’axe tourne autour de Ox ? ou de Oz ?
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8.2 Ex.:Roue du velo

Théorème du 
moment cinétique

M selon −ො𝑥 
𝑑𝐿

𝑑𝑡
selon −ො𝑥 M selon Ƹ𝑧 

𝑑𝐿

𝑑𝑡
selon Ƹ𝑧

a) forces F parallèles à z b) forces F parallèles à x

ො𝑦

ො𝑥

Ƹ𝑧

ො𝑦

ො𝑥

Ƹ𝑧

𝐿𝐺tourne dans le plan ො𝑥 ො𝑦 autour de O Ƹ𝑧 𝐿𝐺tourne dans le plan ො𝑦 Ƹ𝑧 autour de Oො𝑥


